ABACA PULP

Abaca fibers are ideal for infilling during the process of leaf casting - one of the methods in the paper conservator’s repertoire of preservation techniques. It is also used by hand papermakers, and the weaving craft. It comes from a species of banana plant indigenous to the Philippines. The fiber has been known to the Western World since the 1500s when Magellan came across it, and its uses, in the Philippines. It is also known as Manila Hemp.

Abaca fiber lends to appears its natural hues of “... ivory white to light and dark brown.” With a mean length of 1/4”, abaca fibers add strength to paper, even when wet. The paper industry capitalizes on the strength of the abaca fiber for such products as tea bags, coffee filters, and currency.

A favorite of hand papermakers, abaca is used by itself or blended with other fibers. Abaca allows the paper maker to make thin, strong sheets, even when used in combination with shortened recycled fibers.

Abaca can contribute the desirable qualities of crispness and translucence to handmade paper. It also adds strength to cast paper projects, although the natural warm hue of abaca will tint cotton linter.

Directions:

Combine abaca pulp with other fibers:

Abaca pulp can be blended with cotton linter, other specialty fibers, or recycled paper pulp. Put just a pinch into other pulp to make a sheet stronger. Or, make a sheet half-and-half abaca and other pulp. Experiment! Mix abaca in different proportions with other pulp for creative adventures.

Making paper by 'pouring':
1. For a 5.5” x 8.5” sheet, use two 2” squares of abaca pulp. For an 8.5” x 11” sheet, use no less than five 2” squares. For thicker sheets, use more.
2. Disperse the pulp in water in a blender. Note: The abaca fiber is long. This requires more water in the blender to provide room for fibers to get and stay away from each other. For 2 squares, use at least 3.5 cups of water. For 5 squares, use as much water as the blender will hold. Blend for 15-20 seconds.
3. For either the smaller or larger sheet, keep the pour hand mold low in the water with the maximum amount of water above the screen. This is important - as in the blender, enough water is needed to permit even distribution of fibers in the water above the screen. Being long, the abaca fibers will tend to flock. Insufficient water in the deckle will make even distribution of the pulp difficult. Uneven distribution above the screen will make a correspondingly uneven distribution (flocking) in a sheet, though flocking is not inherently bad. Get even distribution by stirring, wiggling your fingers in the pulp, or other means of creating turbulence.
4. Lift the hand mold from the water. Some to-and-fro rocking of the hand mold during draining will likely aid even distribution of the fibers across the sheet.
5. Tip the hand mold to one side and let water drain for a minute or so. The flocking effect might cause a rippled look on your sheet’s surface. (On a $500,000,000 paper machine, the mixture “above the screen” is 99 parts water to one part fiber, permitting totally even fiber distribution. Hand molds can’t match this, but still make very satisfactory sheets)
6. If there are bare spots on the screen (severe flocking), re-float the sheet and try to get more even dispersal before lifting the mold. If still not successful, make and add more pulp.
7. Proceed to couching pressing, and drying.

Hold the dry sheet up to the light and notice the flocking. Drying by heat will cause the sheet surface to be somewhat uneven and textured due to flocking/shrinkage factors.

Making paper by 'dipping':

For dip molds, prepare abaca fiber in the blender and pour into a vat. Continue to get enough depth in the vat to be able to dip. Sheet thickness can be controlled sheet by adding water or more concentrated fiber to blended pulp in the vat. Add water to slurry if pulled sheets are too thick or add abaca pulp blended with less water if they are too thin.

Please call us at 1-800-628-1912 if you have any questions, comments, or would like to place another order.